
Math 4200
Friday November 20
4.4  Infinite series and infinite partial fractions

Announcements:   



4.4:  Infinite series magic and infinite partial fractions, via contour integration....

Suppose we have an analytic f z , f  analytic on z1, z2, ..., zk .  Suppose we 
wish to compute

n = 1
f n .

Here's an approach that often works.  For example, we'll see that it works in the cases of

f z = 1
zk  where k is an even number, and gives closed form expressions for 

n = 1

1
n2 ,  

n = 1

1
n4 ,  

n = 1

1
n6 ,   .... 

Consider the auxillary function g z = f z  cot  z .  We choose to multiply by 
 cot  z  partly because

Check:    cot  z  has simple poles precisely at each n , with residue 1, so 
f z  cot  z  has residue f n  when f  is analytic at z = n.

f z  cot  z  = 
f z   cos  z

sin  z
.



Now consider these special square contours N , as N .   They are chosen so that 
 cot  z  is uniformly bounded on N  (by M = 2 , for example), as N .  

Theorem 1  Let z1, z2, ... zn  be the singular points of f  and suppose  f z  decays 
sufficiently rapidly so that 

lim
N

N

 f z   cot  z  dz = 0 .

Then

lim
N j = N

f analytic at j
 

N

f j    =     
zk singular
point of f

Res f z   cot  z , zk .

proof:



> > 
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Repeated for convenience:  Theorem 1  Suppose  f z  decays sufficiently rapidly so 
that 

lim
N

N

 f z   cot  z  dz = 0 .

Then

lim
N j = N

f analytic at j
 

N

f j    =     
zk singular
point of f

Res f z   cot  z , zk .

Example  Find formulas for 

n = 1

1
n2 ,  

n = 1

1
n4

using f z = 1
z2 , 1

z4
.   What goes wrong if you try to find a closed form expression 

for

n = 1

1
n3  ?

Hint:  Here's the beginning of the Laurent series for  cot  z  at the origin:
series cot z , z = 0, 12 ;

z 1 1
3  2 z 1

45  4 z3 2
945  6 z5 1

4725  8 z7 2
93555  10 z9

1382
638512875  12 z11 O z13



Theorem 2  If f z  is analytic on z1, z2, ... , zk  and if for large z  there is an 

M  for which   f z M
 z 

, then

lim
N

  

N

f z   cot  z  dz = 0.

Thus, from Theorem 1, 

lim
N j = N

f analytic at j
 

N

f j    =     
z
k
 singular

point of f

Res f z   cot  z , zk  

proof.  Let R  be large enough so that all of the singularities of f  have modulus less than
R .  Then f  has a Laurent series in the complement of this disk, and because of the 

decay estimate it only has negative powers of z (because f 1
z  has a removable 

singularity at z = 0 and extends to equal zero there  CHECK), 

f z =
b1
z   

m = 2

bm

zm = 
b1
z 

  g z

where there is a uniform estimate for g for z R ,  g z C
z 2 .   Thus

N

f z   cot  z  dz = 

N

b1
z   cot  z  dz  

N

g z   cot  z  dz.

The integrand in the first integral is even because it's a product of two odd functions but
the contour differential d z is odd for this square contour, so the first integral evaluates 
to zero!  And because  cot  z 2 on the contours N  and g z  decays, the second 
integral's modulus can be estimated by 

N

g z   cot  z  dz   2 C
N2 4 2 N 1 0   as N .



Repeated for reference:  if for large z we have a decay estimate  f z M
 z 

 then

 

lim
N j = N

f analytic at j
 

N

f j    =     
z
k
 singular

point of f

Res f z   cot  z , zk  .

Examples   1)  f z = 1
z2 k , as we discussed in earlier example.  Magic summation 

formulas for 
n = 1

1
n2 k  based only on coefficients of the Laurent series for  cot  z  

at the origin!

2)  For z0 , f z = 1
z z0

 , which has a simple pole at z0 .  So for z0  not an 

integer,

lim
N

 
n = N

N
1

n z0
=  Res 1

z z0
  cot  z , z0 =  cot  z0 .

So, replacing z0  with z, multiplying the equation by 1, and arranging the sum on the 
left as a sum of two series that converge uniformly on compact subsets that avoid the 
integers:

 cot  z = lim
N

 
n = N

N
1

z n

 cot  z = 1
z   lim

N
 
n = 1

N
1

z n
1
n  

n = 1

N
1

z n
1
n  

Because 
1

z n
1
n = z

z n n ,      1
z n

1
n = z

z n n
each of the modified subseries converges uniformly on compact subsets that avoid the 
integers - by the Weirerstrass M test with comparison series the tail of

n = N

1
n2  .

So

 cot  z = 1
z   lim

N
   

n = 1

N
1

z n
1
n   lim 

N
  

n = 1

N
1

z n
1
n .

This is like an infinite partial fractions decomposition for  cot  z !



3)  In your homework you'll prove another infinite partial fractions expansion,
2

sin2  z
 = 

n
 1

z n 2 .

Notice that the pole locations and orders agree on both sides of the equation, so there 
would be some hope for the identity being true.  There is a very quick proof of this 
identity if you can see it, based on doing something to the last identity on the previous 
page.  An alternate proof would be to show that the difference of the two functions 
above has removable singularities at the integers; is 1 periodic in the real direction; 
and approaches zero uniformly in the imaginary direction, and then apply Liouville's 
Theorem to the difference.

These last two examples illstrate a general theory for infinite sum partial fraction 
expansions for meromorphic functions, i.e. functions which are analytic on  except for 
an at most countable set zk  of isolated pole-type singularities (as opposed to essential 
singularities).

The Mittag-Leffler Theorem says you can basically create an infinite sum analytic 
function with prescribed isolated poles, and with prescribed negative power Laurent 
series at those poles.  (There's a short page on this topic at Wikipedia that contains the 
two identities we've written down, as well as some others.)

Related to infinite sum formulas for Meromorphic functions, there are infinite product 
expansions as well for analytic functions, involving the zeroes of the analytic functions.  
(The connection between the two theories is the logarithm, which takes products to 
sums.)  In Chapter 7 of our text there are infinite product identities related to the 
Riemann-Zeta function, for example.



Appendix:  Uniform bound estimates of cot  z  on the half-integer contours N  . 
These estimates hold:

cot  z 1 on the vertical paths
cot  z 2 on the horizontal paths  (the bound limits to 1 as N  )

One efficient way to make these estimates is to use the various trig identities we 
discussed in Chapter 1.  For u, v ,

cos u i v  = cos u cos i v sin u sin i v
cos u i v = cos u cosh v sin u i sinh v
sin u i v = cos u sin i v sin u cos i v

sin u  i v = cos u i sinh v sin u cosh v .
So,

cos u i v
sin u  i v = cos u cosh v  i sin u sinh v

sin u cosh v  i cos u  sinh v
cos u i v
sin u  i v

2
= cos2 u cosh2 v sin2 u sinh2 v

sin2 u cosh2 v cos2 u sinh2 v
.

cos2 N 1
2 = 0,  sin2 N 1

2 = 1 

cos  x i  y
sin  x  i  y

2
 = 

sinh2   y
cosh2  y

1 on the vertical paths.   

And along the horizontal contours - for v = N 1
2 ,  and using 

cosh2 v sinh2 v = 1,
cos u i v
sin u  i v

2
= cos2 u cosh2 v sin2 u cosh2 v 1

sin2 u sinh2 v 1 cos2 u sinh2 v
 

 = cosh2 v sin2 u
sinh2 v sin2 u

cosh2 v
sinh2 v

1   as N .

claim verified.





Math 4200-001
Week 13 concepts and homework

4.4
Due Friday November 27 at 11:59 p.m.

4.4:   2, 3, 4, 5, 8, 9  (number 9 won't actually be graded - consider it an extra credit 
challenge.)


